
5Selective Influence and
Classificatory Separability
(Perceptual Separability) in
Perception and Cognition:
Similarities, Distinctions, and
Synthesis

James T. Townsend, Yanjun Liu, Ru Zhang
Indiana University Bloomington, Bloomington, IN, United States

In our opinion, psychology and its close cousin (and partial offspring), cognitive sci-
ence, are properly viewed as black-box sciences where for the most part, the inner
workings must be divined from the orderliness of input–output relationships. Even
today, physiology can offer, at best, relatively modest resources to this end, though
we hope for massive improvements in the marriage of physiological recordings and
behavioral technologies as the future unfolds.

One fundamental theme in psychology concerns whether a change in one entity
causes an alteration in another entity or not. Unsurprisingly, the issue of invariance
vs. change is fundamental in psychological science and plays out in many forms. Of
course, orderly dependence is the obverse of independence or invariance. We earlier
have defined the very general principle of correspondent change as the correlative
structure and function in a theory with concomitant change, or invariances, in nature,1

such as parameter invariance across certain variations of experimental circumstance
(Townsend & Ashby, 1983, Chapter 15, p. 481). Absent this precept, mathematical
applications to science are little more than descriptive exercises at best, or useless,
scientifically vacant meanderings at worst. The present concepts are special cases of
this foundational notion.

Of course, where the element of chance is ubiquitous, as within psychology, de-
pendence and independence have to be interpreted in a probabilistic framework. This
aspect, by itself, forms no serious challenge since dependence, or no, has long been a
hallmark of probability theory.2,3

Two types of functional dependence that have played a central role in our own theo-
ries and methodologies are selective influence and perceptual separability. There have
been hundreds of papers utilizing these concepts.4 It would be especially agreeable if
the investigator were able to directly observe samples of the random variables them-
selves. With regard to selective influence, the operative observable random variable
has usually been response time (RT) and with separability, usually confusion frequen-
cies. For instance, if we could observe the actual processing times of the processes
in a serial system, we would probably not require the more removed, but as it turns
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out, essential, statistics on response times. Similarly, in general recognition theory, we
can typically only observe probabilities of recognition and confusion rather than the
underlying percepts themselves.

More rigorous and deeper characterizations will be offered subsequently, although
we strive for communicability at the possible expense of a stark logico-deductive
approach. To initiate the discussion, selective influence lies at the heart of the pop-
ular additive factors method (Sternberg, 1969), a methodology which can support or
disconfirm serial processing. It also underpins the subsequent systems factorial tech-
nology (SFT), which permits testing of parallel and more exotic mental architectures
(e.g., Townsend & Nozawa, 1995; Townsend & Wenger, 2004; see Algom, Eidels,
Hawkins, Jefferson, & Townsend, 2015, for history and general discussion; of course,
this volume contains a treasure trove of this theory, methodology, and applications),
stopping rules, capacity, and independence. Its power derives from its mathematical
rigor but also that it provides tests that are nonparametric as well as distribution free.
These characteristics are almost unique in the annals of the study of perceptual, cog-
nitive, and action systems. Informally, selective influence of an experimental factor
means that exactly one of the two or more psychological processes are affected by that
factor. Selective influence is essential to uncovering the architecture and stopping-rule
of the attendant cognitive processes.

Now let us dig deeper into the concept of selective influence with an experimen-
tal example. This study by Wenger and Townsend (2001) used the double factorial
paradigm, invented by Townsend and Nozawa (1995; the present volume celebrates
the 20th anniversary of that publication). One factor is simply the presence vs. absence
of each target (typically two) whereas the other factor is really a set of two factors
meant to speed up or slow down processing of one or the other, or both, targets.

The Wenger and Townsend double factorial paradigm investigated detection of
presence vs. absence of two target features, eyes and mouth, either in standard po-
sition in a normal face stimulus or as location-disorganized features. For our example,
we now consider the normal face. The experimental factors consisted of the degree of
visual clarity of the separate features.

Taking combinations of different levels of the clarity factors on trials when both
targets were present, they created a double-factorial design of 4 stimuli: high-clarity
eyes∧high-clarity mouth (hh), high-clarity eyes∧low-clarity mouth (hl), low-clarity
eyes∧high-clarity mouth (lh), low-clarity eyes∧low-clarity mouth (ll). It was expected,
and confirmed, that a higher level of salience of either feature should lead to faster
perception of that feature.

The early usage of selective influence was only concerned with demonstrating in-
fluence at the mean RT level. Townsend and colleagues (Townsend, 1984, 1990a;
Townsend & Schweickert, 1989) demonstrated that in order to empirically distinguish
parallel from serial systems, it was necessary for the selective influence operate at
a more fundamental level. Recall that the cumulative distribution function for RTs
yields the probability, for an arbitrary time t , that the response was made faster than
that duration. Likewise, the so-called survivor function is just 1 minus the cumulative
distribution function and gives the likelihood that the response took longer than any
given t . The “survivor” part of the term comes from its use in actuarial statistics in



Selective Influence and Classificatory Separability (Perceptual Separability) 95

Figure 5.1 (A) Distributional ordering holds for survival functions of simulated response time of ll, lh, hl,
and hh. This indicates the fulfillment of selective influence. (B) Estimated SIC function from the simulated
data. The SIC pattern indicates the two processes are arranged in a serial exhaustive manner.

calculating the probability that a person, machine, etc., survives beyond any certain
point of time, t . Then, a sufficiently strong level of influence, even at the level of mean
RTs, is that the factors order the RT cumulative distribution functions, or equivalently,
the survivor functions (e.g., Townsend, 1990a). Significantly, when selective influence
fails, then at least at the level of mean RTs, virtually any pattern of interactions can
occur (Townsend & Thomas, 1994).

Ensuing developments showed that the same level of selective influence as that test-
ing mean RTs, made much more distinctive predictions for the distribution functions
themselves (Townsend & Nozawa, 1995). Thus, once the selective influence holds at
the level of distribution ordering, SFT would predict unique patterns of survival inter-
action contrast (SIC) that corresponds to a certain combination of architecture (serial,
parallel, or coactive) and stopping rule (self-termination or exhaustive). Figs. 5.1A
and 5.1B are examples of the fulfillment of selective influence at the distributional
ordering of survival functions and the estimated SIC from simulated data.

These unique patterns therefore help to unveil the human’s cognitive systems and
their dynamics (e.g., as an impressive application, see Wenger & Ingvalson, 2003).
More technical details and discussion of selective influence will unfold later on in the
chapter.

Perceptual separability has been more confined to perception per se at least in liter-
ature that employs precisely that name and has not received quite as much theoretical
analysis as selective influence. It is nevertheless an exceedingly important topic in
human information processing and its identifiability in data continues to be investi-
gated (Garner & Morton, 1969; Ashby & Townsend, 1986; Kadlec & Townsend, 1992;
Maddox, 1992; Ashby & Soto, 2015). Again informally, its defining characteristic is
that, given two dimensions or features, the percept of one psychological dimension
is invariant across stimulus changes in the other (see also Silbert & Thomas, 2013;
Soto, Vucovich, Musgrave, & Ashby, 2015).

For a starting example, consider the perceptual dimensions of loudness and pitch.
Then, perceptual separability stipulates that the probability of perceiving one level
of a dimension is constant across different levels of the other dimension. Similarly,
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Figure 5.2 Theoretical structure of General Recognition Theory.

in the example from above of selective influence on the facial features of mouth and
eyes, perceptual separability demands that the perception of eyes, say, be invariant
across the presence or absence of the other. If two distinct sets of eyes or mouths were
employed as stimuli then again, the ability to say, perceive which mouth was present,
would not be a function of the level of the eyes.

Although observing the process of perception is impossible, general recognition
theory (GRT, Ashby & Townsend, 1986; Ashby & Soto, 2015) provides us with a
mathematical approach that could induce the perceptual separability and other under-
lying cognitive processes from empirical observations of response frequencies. The
theoretical structure of GRT is summarized in Fig. 5.2 and the detailed description of
the theory can be found in Ashby and Townsend (1986), Kadlec and Townsend (1992)
and Soto et al. (2015).

GRT predicts that if we observe marginal response invariance such that the distri-
bution of response to one level of dimension is invariant across different levels of the
alternative dimensions, then we could induct the fulfillment of perceptual separability.
Thus, if pitch and loudness perception are perceptually separable, then manipulations
of either stimulus pitch or loudness should only affect the respective perceptual dimen-
sion. It is obvious that this concept of invariance readily extends beyond perception
per se.

Interestingly, in addition to the fact that both these vital concepts have something to
do with cognitive invariances, it turns out that they share certain profound characteris-
tics. Selective influence and perceptual separability are similar concepts to each other
in the sense that both depict the relation that the percept of one dimension is invariant
across manipulation of the orthogonal dimensions. Selective influence was originally
response time-oriented; whereas perceptual separability was originally response clas-
sification.

We will later come to see that although selective influence has received more
theoretical analysis, some of the same questions and characteristics also pertain to
questions about separability. In addition, we will subsequently contemplate whether
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either classificatory separability or selective influence could be enlisted in the other’s
goals.

To our knowledge, there has never been an investigation aimed at explicating their
similarities and, if there are any except for linguistics, substantive differences. In the
present enquiry, we think it is important to include not only what appear to be deep-
seated mathematical or semantic distinctions or resemblances, but also the purpose
and intent of the users. Typical conventions will also be grist for discussion.

As pointed out above, the term “selective influence” implies manipulation of some-
thing with psychological relevance in order to produce evidence from an observable
variable that is intended to reveal some type of psychological structure or function.
Perceptual separability, on the other hand, refers to a dimensional or featural percept
remaining invariant with a stimulus change on a distinct dimension or feature.

However, the epistemological implications of this part of the discussion go far be-
yond perception as will become more apparent below. We thereby coin the new term
classificatory separability to substitute for “perceptual separability.” In fact, the fol-
lowing characterizations intend to be inclusive of earlier usage, but attempt to expand
their generality and potential scope of applicability. This tack is especially helpful
when discussing the scientific purpose of the concepts. References will be given to
literature which makes available the mathematical underpinnings.

Selective Influence

The basics tenets of selective influence are:

I. The purpose of selective influence. The experimenter manipulates one or more
variables (typically at least two) with the design of separately affecting distinct
psychological processes.

II. The selective influence variable may be external or internal to the observer: (A) It
is external if applied to an external sense organ, for instance, the eyes, ears, skin,
etc.; (B) It is internal if applied to an internal organ, sensory or not. For in-
stance, an ingested pharmaceutical might induce a migraine headache (sensory)
vs. causing slowed gastric motility without sensation (non-sensory).

III. The selective influence variable may be qualitative or quantitative, though the
quantitative instances, if not universal, were the first employed and still appear
to form the most potent in reaching the aims of the researcher.

IV. If quantitative, the variables could be unidimensional or multidimensional and
the dimensionality may or may not be expressly defined. Expressly defined di-
mensionality could be features of an object such as brightness, shape; whereas
the implicitly dimension could be psychological dimensions.

V. The experimenter specifies not only the putative selective influence variable but
also one or more dependent variables, which have been shown to respond differ-
entially to the stipulated selective influence variables.

VI. The selective influence variable may be part of the stimulus with which the ob-
server is presented, or not.
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VII. If part of the stimulus, the selective influence variable may be an aspect or di-
mension which directly relates to the observer’s task or it might be unrelated to
the task.

Most of the foregoing may be immediately evident but (VI) and (VII) might be
unpacked a bit. An example of a case when the selective influence variable is not
part of the stimulus is the following: Suppose it has been hypothesized that the motor
system of the observer will act more slowly when the ambient temperature is turned up
higher than normal but that this operation does not affect early perceptual processing
times. This manipulation is not an inherent part of the observer’s task. A case of a
selective influence variable which is an integral part of the stimulus would be the
brightness of a visual stimulus which the observer must perceive.

With regard to (VII), suppose now that light intensity as a selective influence vari-
able is used where the actual task of the observer is to identify an English letter from
the usual 26 letter alphabet. The light intensity itself is not part of the task. However,
if the similarity of the stimulus letters is manipulated, this facet may be considered to
be an intimate particulate of the basic task. A reviewer points out that the aforemen-
tioned ambient temperature and stimulus brightness might be assessed with regard to
the architecture of their processing.

The prior discussion holds whether interpreted probabilistically or deterministi-
cally. Now assume, as in most psychological milieus, we are dealing with probabili-
ties.

Definition 1. A Psychological System is a collection of connected entities called pro-
cesses.

Every process is usually taken to interact with at least one other process to avoid
triviality.

Definition 2. A Set of Experimental Factors is a collection of entities that can affect
one or more of the subprocesses under study.

Definition 3. Process is a proper part of a psychological system, which performs a
psychological function. It is assumed to have some set of inputs and a set of outputs
and usually is expected to expend time to do its job.

Definition 4. Influence by an experimental factor on a process implies that the proba-
bility distribution on some dependent variable affected by that process is altered under
change of the factor values.

If an experimental factor affects a single process, its influence is said to be selec-
tive.5 The original definition from Sternberg (1969) did not make entirely clear what
might or might not satisfy selective influence, and the emphasis was on mean RT and
thus the means of the pertinent random times. Suppose that processing times Tx and
Ty are bivariate normally distributed, there are three properties to characterize Tx (Ty):
the mean of Tx (Ty), the variance of Tx (Ty), and the covariance between Tx and Ty .
If the distribution of Tx is affected by a variable X while the distribution of Ty is af-
fected by a distinct variable Y and Tx and Ty were stochastically independent, then
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Figure 5.3 (A) Selective influence fulfilled in a serial system with experimental factors: X, Y . (B) A direct
non-selective influence in a serial system with experimental factors X and Y . (C) Selective influence fulfilled
in a parallel system with experimental factors X and Y . (D) A direct non-selective influence in a parallel
system with experimental factors X and Y .

selective influence could be claimed on the distributional level. If Tx and Ty are in-
terdependent, one cannot claim selective influences without inquiring the cause of the
interdependence. Having the mean of Tx depend on X and the mean of Ty depend on
Y , the independence between the means and the stochastic dependence of Tx and Ty

implies that the stochastic dependence of Tx and Ty depends on some variable that
is independent of X and Y . Hence manipulating Y(X) influences neither the mean of
Tx(Ty) nor the covariance between Tx and Ty . Then selective influences at the level of
mean RTs can be claimed. Attempts were made subsequently to deepen the definition
as in the following.

Definition 5. (E.g., Townsend, 1984; Townsend & Schweickert, 1989.) Consider two
processes Sx and Sy with processing times Tx and Ty . Selective influence holds if and
only if there exist two experimental variables, X and Y , such that Tx is affected only
by X and Ty is affected only by Y .

This definition does move the emphasis on means to that of the underlying random
time variables, but it leaves fuzzy just what role stochastic dependencies might play.
This important aspect will be further developed below.

Townsend and colleagues (Ashby & Townsend, 1980; Townsend, 1990b; Townsend
& Ashby, 1978; Townsend & Schweickert, 1989) have shown that how, and to what
depth, an experimental factor affects the observable statistic is strongly linked to
how much of an operating system can be identified from that statistic. Figs. 5.3A
through 5.3D exhibit the fundamental serial and parallel architectures, which either
satisfy, or not satisfy, selective influence. Direct non-selective influence is said to oc-
cur if an experimental factor has a direct impact on the “wrong” process, for example,
factor X affects Ty . A more subtle type of failure will be discussed later.

The way in which a factor effect operates probabilistically can simply be defined
through a deformation of a probability distribution, which leads to the next pivotal
definition.
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Definition 6. An experimental factor influences a processing time distribution at the
level of stochastic dominance, if it orders the distribution so that F(t; X2) = P(T ≤
t; X2) > F(t; X1) = P(T ≤ t; X1) if and only if the experimental factor satisfies
X2 > X1.

Stochastic dominance is a fairly weak type of dominance in a hierarchy of poten-
tial echelons of influence (Townsend, 1990a; Townsend & Ashby, 1978). However,
influence only at the even more coarse level of mean processing times, an example of
an ‘ineffective’ influence in most studies of response times, is too weak to prove the
important theorems pertaining to testing various architectures and stopping rules (e.g.,
Townsend, 1984; Townsend & Ashby, 1983).

For instance, if the researcher is attempting to assess whether visual identification
of separate letters takes place in serial or parallel, then one may manipulate brightness
and determine whether or not the response time cumulative distribution function on an
individual letter is always larger at any arbitrary time for the brighter stimulus. When
Schweickert (1978) began to expand the kinds of architecture that could be identi-
fied by factorial manipulations, he assumed that psychological process durations were
affected by adding a time increment (or decrement) to each process time. The main re-
sults at that time were confined to deterministic systems, that is, systems for which the
constituent process durations were constant, although Schweickert presented certain
RT bounds for stochastic situations (e.g., Schweickert, 1982).

Taking this concept to fully stochastic systems, it had long been known that if a
positive and independent increment is added to a random variable, stochastic dom-
inance occurs. However, this situation is a special case of the latter. Townsend and
Schweickert (1989) showed that if one gives up the idea of independence of the in-
crement, then stochastic dominance and adding a positive random increment to the
random variable are mathematically equivalent.6,7

It is important before proceeding to re-emphasize that the simple satisfaction of
selective influence will not automatically lead to, for instance, identification of parallel
vs. serial processing. In fact, even if Tx is affected only by X and Ty is affected only
by Y with attendant stochastic independence, tests of parallel vs. serial processing at
the level of mean RTs will not be feasible (e.g., Townsend & Ashby, 1983; Townsend,
1984). As an apt example, suppose that the variance of Tx is affected by X but the
mean of Ty is influenced by Y . It is not clear how to even necessarily detect these
effects, much less how to use them to determine aspects such as architecture.

As another example, consider that the prediction by a parallel system with a min-
imum time stopping rule is that the means, as functions of the experimental factors,
should exhibit a certain interaction (in fact, positive in this case as opposed to zero in
the serial model). If the experimental factors order only the means of the individual
channels, then this interaction could be anything.

Figs. 5.4 and 5.5 illustrate these concepts. First, Fig. 5.4A shows dominance at the
mean level. Since, it appears that one distribution is simply a shift of the other, one
expects dominance at the distributional level to hold as well (Townsend, 1990a), which
is illustrated in Fig. 5.4B. Fig. 5.4C then indicates a valid SIC signature for parallel
processing with an exhaustive stopping rule, when dominance at the level of Fig. 5.4B
is true.
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Figure 5.4 (A) Stochastic dominance holds at the mean level. (B) Stochastic dominance holds at the distri-
butional level. (C) Survival interaction contrast of parallel exhaustive processing with stochastic dominance
holding at the distributional level.

On the other hand, Figs. 5.5A, 5.5B, and 5.5C reveal what can go wrong if mean
dominance occurs but distributional dominance fails. Observe in Fig. 5.5C that an
invalid SIC signature results.

Dzhafarov and colleagues (e.g., Dzhafarov & Kujala, 2012; see also, footnote 5)
have performed a series of mathematical analyses on selective influence at the distri-
butional level. The most important specification from this sector, for present purposes,
was that the germane process random variables could be probabilistically dependent
on a third random variable which was itself totally independent of the experimental
factors (e.g., Dzhafarov, 2003). A simplified special case of his definition, but which
will suffice for our purposes, follows.

Definition 7. (Dzhafarov, 2003.) Selective influence holds for random times Tx and
Ty if and only if Tx is a function of X and C whereas Ty is a function of Y and C.
X and Y are distinct experimental variables while C is a random variable independent
of X and Y .

It can be readily shown that if C = c a particular value, Tx and Ty are condition-
ally independent (as shown in Fig. 5.6). Furthermore and more importantly, all the
theorems of Townsend and Nozawa (1995) that permit identification of process char-
acteristics such as architecture and stopping rule then go through immediately (e.g.,
Dzhafarov, 2003). This issue will be revisited below.
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Figure 5.5 (A) Stochastic dominance holds at mean-level. (B) Stochastic dominance fails at the distribu-
tional level. (C) SIC with absence of stochastic dominance at the distributional level. The shape of this SIC
function does not follow any typical four SIC functions defined in Townsend and Nozawa (1995). But it is
similar to the characteristic SIC pattern of serial exhaustive processing.

Figure 5.6 A parallel system with experimental factors: X and Y . X, Y , and C are independent of each
other. For this case, conditional independence (conditioning on C) holds.

Classificatory Separability

To make sense of our generalization of perceptual separability, we need the concept
of a collection of entities that belong to a psychological family of some sort, some
type of resemblance as it were. This kind of invariance or not, as observed earlier, has
been of interest in psychology back to its philosophical roots. In psychophysics, it has
been of concern whether, for example, the perception of pitch changes when loudness
is changed through manipulation of the sound intensity and vice versa. It has long
been known that neither is invariant as the other dimension of the stimulus is altered.
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A full panoply of types of independence, when response frequencies are analyzed, is
presented in Ashby and Townsend (1986). Related early statements can be found in
Kadlec and Townsend (1992) and Maddox (1992).

Psychological dimensions such as expression and age of a face form another ex-
ample. For instance, an informal observation suggests that a middle aged face appears
older in wearing a dour expression and younger with a happy expression. This partic-
ular example is probably asymmetric since it seems less likely that the degree of, say,
happiness or sadness might be perceived as more extreme in old vs. young faces. In a
deterministic environment, where, for example, faces are completely visible, without
noise, the invariance of expression with age or its failure, are obvious (e.g., Townsend
& Spencer-Smith, 2004). But what about viewing a face through fog or in a bad pho-
tograph? We require interpretations in terms of probability distributions again.

Then, we define classificatory separability as the invariance of a particular member
of that class when experienced consciously when another class is changed. Thus, in
more rigorous terms:

The basic tenets of classificatory separability are:

I. Psychological class A is classificatory separable from B if the identity of a value
from A is unaffected by a change in class B.

II. Classificatory separability or its failure can occur: (i) due to manipulations by an
experimenter, or (ii) can occur autonomously.

III. If II(1), the experimenter stipulates one or more dependent variables which refer
to the processing of A and B and that will reflect in some way whether or not
invariance eventuates.

Let Ai represent the levels of class A, and Bj those of class B with i, j = 1, 2
within the context of a so-called complete identification paradigm, that is, one where
all four combinations of class values appear across the trials of the experiment. Also,
let gij (a, b) be the joint distribution of psychological values a and b, where a is asso-
ciated with A and b with B, for stimulus compound AiBj .

The original definition of perceptual separability in Ashby and Townsend (1986)
was as follows, with that term replaced by “classificatory separable”. It is also sketched
in Fig. 5.7.

Definition 8. Psychological class A is classificatory separable across levels of B for
a given level Ai if and only if

gi1(a, b) = gi2(a, b).

Similarly, psychological class B is classificatory separable across levels of A for a
given level Bj if and only if

g1j (a, b) = g2j (a, b).

Observe that separability could hold for one level of a class but not the other and/or
for one class but not the other. As noted above, such a situation might obtain in that
perceived age might be a function of expression but not vice versa. The marginal
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Figure 5.7 (A) The four ellipses are the contours of the joint distributions of responses to the two dimen-
sions. The marginal distributions are plotted on the bottom and on the left. Perceptual separability holds
for both dimensions: the marginal distributions of each dimension are invariant across the change of the
other stimulus dimension. (B) Perceptual separability fails for dimension A as marginal distributions at
each level of dimension A is different across the change of dimension B. However, the separability still
holds for dimension B.

distribution on perceived age of an individual would be shifted higher when paired
with the dour expression as opposed to that paired with a happy expression.

Finally, it is important to grasp that those interactions among percepts or other cat-
egories could occur, just as in selective influence any one of a hierarchy of relations
might obtain (Townsend, 1990a). With that fact in mind, we next delve into an es-
sential quantitative correlate of both our major concepts. That notion is the marginal
distribution of the central joint distributions, processing times in the case of selec-
tive influence and perceptual or cognitive observation random variables in the case of
separability.

The Pivotal Notion and Role of Marginal Selective
Influence

Marginal Selective Influence in RT Studies

Since selective influence has received more theoretical analysis than separability, over
the past two or three decades, we first take up selective influence with respect to
marginal selective influence.

Townsend and colleagues (e.g., Townsend & Ashby, 1983; Townsend, 1984;
Townsend & Thomas, 1993) allowed for probabilistic interactions of the processes as
long as the marginal distributions remained unaffected by the “wrong” experimental
factors. For instance, in the serial case, processes might be across-stage independent,
or dependent meaning that the second process in a serial chain could depend stochasti-
cally (e.g., be on average faster or slower) on the first, depending on how long the first
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Figure 5.8 A serial system with the potential for indirect non-selective influence due to the dependency
of density function of the second stage on the time taken by the first stage.

process took to complete. Let Tx be the random time associated with the first stage in
a serial system and Ty that for the second stage. Let tx and ty be the specific values for
Tx and Ty , respectively. X and Y are experimental variables, which the experimenter
hopes would separately affect the first and second stages, respectively.

Definition 9. I. Across-stage independence occurs if the density functions satisfy
fy(ty, Y |tx) = fy(ty, Y ). II. Across-stage dependence occurs if and only there ex-
ist values of tx such that fy(ty, Y |tx) �= fy(ty, Y ).

Suppose the two stages were across stage independent, then fy(ty, Y |tx) =
fy(ty, Y ). And assume there is no direct non-selective influence so that fy(ty, Y,X|tx)
= fy(ty, Y |tx). Then as a direct consequence of across stage independence fy(ty, Y |tx)
= fy(ty, Y ), selective influence follows perforce.

Next, what about when across stage independence fails, that is, fy(ty, Y |tx) �=
fy(ty, Y ), and the left hand side is a non-trivial function of the previous stage time,
tx? We can consider the density on Ty , written as a random function, depending on
the first stage time tx , f (Ty, Y |Tx = tx). When across stage dependence occurs, as
indicated, then the (random) distribution of f (ty, Y ), conditioned on Tx = tx will be
a non-trivial function of tx : Ety[f (Ty, Y |Tx = tx)] = f (ty, Y |Tx = tx) is clearly a
function of tx and not, ordinarily, equal to its marginal distribution. In fact, the latter
will usually be a function of the wrong experimental variable X. We may find it by
taking the expectation of f (Ty, Y |Tx = tx, X) over Tx = tx :

Etx

{
Ety

[
f (Ty, Y |Tx,X)

]} =
∫

Ety

[
f (Ty, Y |tx, X)

]
f (tx,X)dtx = f (ty, Y,X).

The integral, of course, is taken over 0 < tx < ∞. Observe that the final marginal
density for ty is a non-trivial function of the “wrong” factor X!

Definition 10. Potential indirect non-selective influence occurs when there is across
stage dependence.

Fig. 5.8 indicates the incidence of indirect non-selective influence in a serial sys-
tem. Nonetheless, if somehow the dependence on X disappears on marginalization,
then selective influence still is in force. This will not ordinarily occur for arbitrary
conditional distributions f (Ty, Y |Tx = tx), but can under certain circumstances. In
that event we have an instance of Definition 11.

Definition 11. Marginal selective influence holds if and only if Etx{Ety[[fy(Ty,

Y |Tx)]] = fy(ty, Y ).
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Just to firmly instantiate this last principle, suppose fy(ty, Y |tx) �= fy(ty, Y ), that
is, across stage independence does not hold and potential indirect non-selective in-
fluence (Definition 10) does. Then, it could then be, and probably will be, that the
marginal distribution on Ty , after integrating over Tx , will, indirectly, be a function
of X as detailed just before Definition 10. It is an instance of indirect non-selective
influence. We formalize this concept in Definition 12.

Definition 12. If X does not directly affect Ty yet Etx[fty(Ty, Y )|Tx = tx, X] =
fy(ty, Y,X) �= fy(ty, Y ), then marginal selective influence fails and indirect non-
selective influence is said to occur.

At the time (e.g., Townsend & Nozawa, 1995; Townsend & Schweickert, 1989) it
was not investigated as to whether, when and how the “marginalizing out” might occur,
when potential indirect non-selective influence was present, due to dependence across
stages. But, note that if Dzhafarov’s definition of selective influence is satisfied (e.g.,
Dzhafarov, 2003; see Definition 7 above) then marginal selective influence will indeed
be satisfied. Thus, even with the dependence of two random variables say Tx and Ty

on a third random variable, C in addition to selective factors, respectively X and Y ,
marginal selectivity could, in principle, hold and, further including the assumption of
distribution ordering mentioned above, permits the proofs of architecture identification
to go through unimpeded. However, if marginal selectivity does not hold, then havoc
even in mean RT predictions erupts (Townsend & Thomas, 1994).

Further, as Dzhafarov and Kujala (2010) demonstrate, even a stronger version of
marginal selectivity does not imply Dzhafarov’s definition of selective influence in the
presence of certain kinds of stochastic dependencies. They have produced a straight-
forward counter example, based on discrete probability distributions, in which the
variables do satisfy even a somewhat more stringent version of marginal selectivity,
yet fail to actually fulfill the condition of selective influence (Kujala & Dzhafarov,
2010). This counter-example may be thought of as an instance of indirect non-selective
influence. Thus, at least within the class of discrete distributions, marginal selectivity
is a necessary but not sufficient condition for the Dzhafarov (2003) definition of selec-
tive influence. Nonetheless, it is not at all clear whether marginal selectivity might be
sufficient when in the presence of, say, continuous probability density functions that
are continuous in their experimental variables. Moreover, we suspect that a supple-
mentation of such densities with the strong condition of distribution ordering by the
factors may be enough to force sufficiency. We are presently exploring this branch of
the field.

At this point in time, there exists a test that is a necessary and sufficient condition
for selective influences on finite discrete variables (Dzhafarov & Kujala, 2010). This
is a test that can be performed without having to assume the distribution ordering. It
is called the Linear Feasibility Test. In a complete identification paradigm if the test is
passed, or in other words, selective influence on discrete variables is established, if one
can find four jointly distributed variables (HX1,HX2,HY1,HY2), each corresponding



Selective Influence and Classificatory Separability (Perceptual Separability) 107

to a level of a factor, satisfy the following constraints:
∑
ln

Pr(HX1 = k ∧ HX2 = l ∧ HY1 = m ∧ HY2 = n)

= Pr(TX1 = k ∧ TY1 = m | X1Y1),∑
lm

Pr(HX1 = k ∧ HX2 = l ∧ HY1 = m ∧ HY2 = n)

= Pr(TX1 = k ∧ TY2 = m | X1Y2),∑
kn

Pr(HX1 = k ∧ HX2 = l ∧ HY1 = m ∧ HY2 = n)

= Pr(TX2 = k ∧ TY1 = m | X2Y1),∑
km

Pr(HX1 = k ∧ HX2 = l ∧ HY1 = m ∧ HY2 = n)

= Pr(TX2 = k ∧ TY2 = m | X2Y2),

and

1 ≥ Pr(HX1 = k ∧ HX2 = l ∧ HY1 = m ∧ HY2 = n) ≥ 0,

where k, l, m, n are values of TX1, TX2, TY1, TY2.
There are some necessary conditions for selective influences. One is called the dis-

tance test (Kujala & Dzhafarov, 2008). An alternative test that can be used when one
has access to covariance matrices is the cosphericity test (Kujala & Dzhafarov, 2008).
We observe that if the distributions are multivariate Gaussian, then the following con-
dition holds under transformations to standard form, that is, with means equal to 0 and
variances equal to 1. Then, letting r(i, j) be the covariances (= correlations here) for
each pair of bivariate distributed variables, we have

Definition 13. (Kujala & Dzhafarov, 2008.) Correlations r(i, j), i, j = 1, 2 satisfy
cosphericity if and only if

∣∣r(1, 1) · r(2, 1) − r(1, 2) · r(2, 2)
∣∣ ≤ [(

1 − r(1, 1)2) · (
1 − r(2, 1)2)]1/2

+ [(
1 − r(1, 2)2) · (

1 − r(2, 2)2)]1/2
.

Moreover, if the researcher is willing to relinquish some generality, then by as-
sumption of bivariate Gaussian distributions, the relevant condition above becomes
necessary as well as sufficient. If, in addition, the pertinent random variables are di-
rectly observable, Kujala and Dzhafarov (2008) have adduced another test. Since it
is virtually never true that the pertinent random variables are directly observable in
either typical RT or accuracy paradigms, we do not consider it here.

As intimated earlier, a taxonomy of distributional correlations is lacking, for exam-
ple, based on across-stage dependencies in serial processes that yet permit marginal
selectivity. Nonetheless, it is quite important to appreciate that marginal selectivity at
the level of distribution ordering suffices for a proof of the fundamental theorems of



108 Systems Factorial Technology

Townsend and Nozawa (1995) on the identification of mental architectures and stop-
ping rules. These and related predictions also appear in a number of chapters in this
volume.

Marginal Selective Influence in Response Frequency Designs

Strikingly, we can immediately espy from Definition 8 that classificatory separability
is equivalent to marginal selectivity in the distribution on A or B, as in Definition 11:
When an experimenter changes the value of a stimulus dimension, say auditory fre-
quency and thereby alters the perceived pitch, if the sense of loudness were unaffected
at the level of the marginal distribution, then loudness would be perceptually separable
from that of pitch. Since under noisy or low-energy conditions, pitch will be stochas-
tic, the thinking was (e.g., Ashby & Townsend, 1986) that we can only ask that its
distribution be unaffected.

A number of considerations long embedded in discussions of architecture and its
related topics in the theoretical response time literature have been absent from those
associated with accuracy and general recognition theory simply because they didn’t
arise naturally. Thus, on the one hand, notions such as the conditional dependencies
within Definition 12 could exist, but were not treated because they failed to arise
within some context analogous to, say, serial vs. parallel processing. And, the static
form of the original general recognition theory and the traditional concepts associated
within psychometrics, signal detection theory and multidimensional scaling, undoubt-
edly encouraged researchers to disassociate correlation structures from the values of
the distributional means. Conversely, the milieu within the field of response time stud-
ies was and is, immediately dynamic and thus promotes such conceptions as “state of
processing or activation” as intimately related to the “states of processing” of other
psychological systems or stages.

The next step forward is to provide a formulation within which the concepts of
selective influence and classificatory separability are special cases. But, this generality
is, in fact, inherent in the definition provided by Dzhafarov (2003), recalled in our
Definition 7.

A Synthesis of Classificatory Separability and Selective
Influence

Both Selective Influence and Classificatory Separability Involve
Psychological Processes

Earlier parts of this study have emphasized that classificatory separability and selective
influence differ in their genesis, purpose, and usage. Nonetheless, the reader may well
have already detected, particularly from the abstract definitions of selective influence
offered above, given in terms of random entities, such as random variables, that they
can be brought together in a tidy fashion.
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Suppose the psychological value of a class on a trial, for instance, a percept of
a psychological dimension, say A, is associated with a process as defined in Defini-
tion 3. And, a change in its value is associated with a value-changing factor, say X and
similarly for dimension B and factor Y . Then, all the aspects of selective influence can
be applied to perceptual separability and an extension to arbitrary classification issues
is evident.

Within this new setting, we can also discern that just as selective influence can
occur in different ways (e.g., simply any change to a distribution vs. some ordering
associated with the distribution), so could the degree of invariance in classificatory
separability. So, an alteration on dimension A could affect any aspect of the distribu-
tion such as the mean or it might order the cumulative distribution functions, hazard
functions or some other statistic. For instance, with dimensions such as pitch, we won’t
expect a change to necessarily order the cumulative distribution functions.

Less frequently considered, even in the selective influence literature, is the pos-
sibility of failure of invariance at distinct levels. For instance, if for the distribution
functions, Fy(ty, Y |tx2) Fy(ty, Y |tx1) when tx2 > tx1 and Fx(tx,X2) > Fx(tx,X1) if
X2 > X1 then perforce ET x{ETy[fy(Ty, Y |Tx,X)]} �= fy(ty |Y) and even more in-
triguingly, ET x{ETy[fy(Ty, Y |Tx,X)]} will be indirectly and non-selectively ordered
in X! In the context of our synthesis, exactly the same kind of thing could happen in
success and failures of classificatory separability.

Next, we entertain a general class of models within which both selective influence
and separability can be theoretically lodged.

Accrual Halting Models

We have been making strides in recent years in building bridges between our strate-
gies which have emphasized invariances associated with separability and indepen-
dence and those constructed to identify mental architecture, workload capacity, and
decisional stopping rules. The first, of course, belongs to the material above on clas-
sificatory behavior expressed in response probabilities whereas the latter is primarily
associated with RTs, although there are subdivisions where this coupling does not
hold.

Although the global mission is far from accomplished, we can point to several
recent advances. Accordingly, we have generalized our nonparametric measure of
workload capacity, C(t), t = time, which gauges performance with more than one
process in operation against a prediction from one-process trials, based on an inde-
pendent, unlimited capacity, parallel model. The new measure, A(t), and called the
assessment function, also rests on predictions from an independent, unlimited capac-
ity, parallel model, but one which now allows errors to occur and, in fact, evaluates
accuracy as well as response time in producing that measure (Townsend & Altieri,
2012).

More germane to our present situation, we have extended our general recognition
theory of classification from response probabilities only to response probabilities and
response times. With response times comes the question of architecture, so a particular
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class of architectures must be assumed in further developments. Our first theoretical
efforts were founded on parallel processes. The individual processes were termed ac-
crual halting models. All these models assume that activation (e.g., information) is
being accrued in the relevant channels with a decision occurring when the first one
reaches its own threshold. The definitions and theorems encompass all of the con-
stituent models, which include most of the extant stochastic models of perception,
action and decision making (see Townsend, Houpt, & Silbert, 2012 for details and
more related studies and theories). The reader can find related developments along a
somewhat different path, in Griffiths and colleagues’ stochastic differential equations
approach to a subclass of accrual models (Griffiths, Blunden, & Little, 2017).

This class of models seems to present an ideal environment for the bringing
together of selective influence and classificatory separability and related notions.
A sticking point would seem to be that up to now, almost all theorems and predictions
relating to selective influence have been dedicated to response times and not accuracy
(but see Schweickert et al., 2012 for exceptions). We are currently in the midst of
theoretical developments intended to expand tests of architecture and stopping rule,
founded on selective influence, to include both response probabilities as well as RTs
(see dissertation of Yang, 2016).

How would these emerging tools be employed within parallel or serially arranged
accrual halting models? If two physical values on two dimensions order distributions
conditioned on, say, being correct, then tests of architecture and stopping rule could
be straightaway applied. Needless to say, the assays of various types of independence
and separability would also be available for implementation with the same set of data
(Townsend et al., 2012).

In theory, other experimental factors, for instance, related to speed of processing
of the dimensions, could be varied with selective influence in mind, besides the tradi-
tional values on the dimensions themselves.

And naturally, the general scope of such principles as classificatory separability and
selective influence are relevant to any set of processes within a temporary or permanent
processing system.
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Endnotes

1. The ways in which theory manifests change vs. invariance takes on highly recondite and
powerful forms in 20th century physics. The prime example must be Emmy Noether’s stu-
pendous theorem which, with simplified language, demonstrated that for every symmetry in
nature such as invariance under rotation, some type of physical quantities will be preserved
in action over a path (see “Invariante Variations Probleme” [Invariant Variation Problems],
Nachr. D. König. Gesellsch. D. Wiss (in German) (Göttingen: Math-phys. Klasse) 1918:
235–257. English translation by M.A. Tavel (1918); the interested reader will also delight in
“Emmy Noether’s Wonderful Theorem”, charming and immensely informative, D.E. Neuen-
schwander, 2011).

2. There are curious features related to dependencies that can arise in nonlinear dynamics (such
as chaos theory, Townsend, 1992; Devaney, 1986) but these lie outside our present concerns.

3. The question of probabilistic dependence arises in many guises, even in our own work,
which must be sidestepped here. Starting references on those within our approaches are
(a) Townsend and Ashby (1983) and (b) Ashby and Townsend (1986).

4. For instance, the main foundations of perceptual separability lie in General Recognition
Theory (Ashby & Townsend, 1986) which itself has been cited in hundreds of papers (Ashby,
2014, personal communication). It undoubtedly figures in hundreds more in diverse studies
of independence of perceptual dimensions (e.g., Garner & Morton, 1969). The notion of
selective influence, lying as it does at the feet of the additive factors method (e.g., Sternberg,
1969) and its generalization, systems factorial technology (Townsend & Nozawa, 1995), has
also been highly popular in experimental and methodological literature.

5. The concept of selective influence as stated here can be generalized to include more factors
affect more processes and it is possible to differentiate between, say, random vectors, ran-
dom variables and most generally, random entities (see, e.g., Dzhafarov & Kujala, 2010) but
this simpler version will suffice for our purposes. And, since 1978 (Journal of Mathemat-
ical Psychology), Schweickert and colleagues have been investigating architectures which
are more complex than the canonical serial vs. parallel arrangements (Schweickert, 1978;
Townsend & Schweickert, 1985; see comprehensive review in Schweickert, Fisher, & Sung,
2012).
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6. Similar statements apply to the notion of separability.
7. This curious recurrence of the same notion in palpably distinct settings, suggests that it may

refer to a reasonably profound concept. That it has relevance to rather weighty conceptions is
bolstered by Dzhafarov and colleagues’ discovery of the relationship of marginal selectivity
to logic associated with long-standing issues in quantum mechanics, including the famous
Einstein–Podalsky–Rosen experiment and the linked Bell’s inequality. However, this avenue
lies outside our present concerns.
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